Modelos Atómicos, Modelo Atómico Actual, Qué es un Modelo Atómico


Un modelo atómico es una representación estructural de un átomo, que trata de explicar su comportamiento y propiedades. De ninguna manera debe ser interpretado como un dibujo de un átomo, sino más bien como el diagrama conceptual de su funcionamiento. A lo largo del tiempo existieron varios modelos atómicos & algunos más elaborados que otros:

  • Modelo atómico de Demócrito, el primer modelo atómico, postulado por el filósofo griego Demócrito.

  • Modelo atómico de John Dalton, surgido en el contexto de la química, el primero con bases científicas.

  • Modelo atómico de Thomson, o modelo del budín, donde los electrones son como las "frutas" dentro de una "masa" positiva.

  • Modelo del átomo cúbico de Lewis, donde los electrones están dispuestos según los vértices de un cubo, que explica la teoría de la valencia.

  • Modelo atómico de Rutherford, el primero que distingue entre el núcleo central y una nube de electrones a su alrededor.

  • Modelo atómico de Bohr, un modelo cuantizado del átomo, con electrones girando en órbitas circulares.

  • Modelo atómico de Sommerfeld, una versión relativista del modelo de Rutherford-Bohr.

  • Modelo atómico de Schrödinger, un modelo cuántico no relativista donde los electrones se consideran ondas de materia.


Modelo atómico de Demócrito


Demócrito desarrolló la "teoría atómica del universo", concebida por su mentor, el filósofo Leucipo. Esta teoría, al igual que todas las teorías filosóficas griegas, no apoya sus postulados mediante experimentos, sino que se explica mediante razonamientos lógicos. La teoría atomista de Demócrito y Leucipo se puede esquematizar así:

  • Los átomos son eternos, indivisibles, homogéneos, incompresibles e invisibles (en realidad, sólo Dios es infinito).

  • Los átomos se diferencian solo en forma y tamaño, pero no por cualidades internas.

  • Las propiedades de la materia varían según el agrupamiento de los átomos.

Defiende que toda la materia no es más que una mezcla de elementos originarios que poseen las características de inmutabilidad y eternidad, concebidos como entidades infinitamente pequeñas y, por tanto, imperceptibles para los sentidos, a las que Demócrito llamó átomos, término griego que significa "que no puede cortarse".

Epicuro, filósofo posterior que retomó esta teoría, modifica la filosofía de Demócrito al no aceptar el determinismo que el atomismo conllevaba en su forma original. Por ello, introduce un elemento de azar en el movimiento de los átomos, una desviación ('clinamen') de la cadena de las causas y efectos, con lo que la libertad queda asegurada.

Los atomistas pensaban distinto a los eleatas, pues mientras los eleatas no aceptaban el movimiento como realidad, sino como fenómeno, Leucipo y Demócrito parten de que el movimiento existe en sí. Habla por primera vez de la fuerza de la inercia. Demócrito pone como realidades primordiales a los átomos y al vacío, o, como dirían los eleatas, al ser y al no ser. Para Demócrito, la realidad está compuesta por dos causas (o elementos): το ον (lo que es), representado por los átomos homogéneos e indivisibles, y το μηον (lo que no es), representado por el vacío. Este último es un no-ser no-absoluto, aquello que no es átomo, el elemento que permite la pluralidad de partículas diferenciadas y el espacio en el cual se mueven.

Demócrito pensaba y postulaba que los átomos son indivisibles, y se distinguen por forma, tamaño, orden y posición. Se cree que la distinción por peso, fue introducida por Epicuro años más tarde o que Demócrito mencionó esta cualidad sin desarrollarla demasiado. Gracias a la forma que tiene cada átomo es que pueden ensamblarse —aunque nunca fusionarse (siempre subsiste una cantidad mínima de vacío entre ellos que permite su diferenciación)— y formar cuerpos, que volverán a separarse, quedando libres los átomos de nuevo hasta que se junten con otros. Los átomos de un cuerpo se separan cuando colisionan con otro conjunto de átomos; los átomos que quedan libres chocan con otros y se ensamblan o siguen desplazándose hasta volver a encontrar otro cuerpo.

Los átomos estuvieron y estarán siempre en movimiento y son eternos. El movimiento de los átomos en el vacío es un rasgo inherente a ellos, un hecho irreductible a su existencia, infinito, eterno e indestructible.

Al formar los átomos, por necesidad, un vórtice o remolino, (dine) sus colisiones, uniones y separaciones forman los diferentes objetos y seres y la realidad con toda su diversidad. Cada objeto que surge en el universo y cada suceso que se produce, sería el resultado de colisiones o reacciones entre átomos. Aunque la cita "todo cuanto existe es fruto del azar y la necesidad" se atribuye a Demócrito, sus escritos enfatizan en la necesidad, al contrario de Epicuro que enfatizó en el azar. El modelo atomista constituye un claro ejemplo de modelo materialista, dado que el azar y las reacciones en cadena son las únicas formas de interpretarlo.

Generalmente, una propuesta, antes de adquirir la condición de ley, parte de ser una mera generalización empírica que aspira a alcanzar un requisito crucial: ser explicada. Una vez hecho esto, la estadística inductiva concreta su idea. Sus premisas dejan de albergar la posibilidad de que la conclusión no se cumpla, y de este modo se constituye la ley. Pues bien, en el caso de Demócrito el desarrollo se invirtió. Demócrito comenzó ofreciendo una explicación a una parcela de la realidad la cual no tuvo la oportunidad de observar, ni, en consecuencia, falsar si hubiese cabido; y verificar como cupo en su momento. El verificacionismo no podía ser un requisito esencial a la hora de dar credibilidad a su explicación y confeccionarla como ley, y Demócrito era consciente de ello:

"La mente del hombre estaría formada por átomos esféricos livianos, suaves, refinados y el cuerpo, por átomos más pesados. Las percepciones sensibles, tales como la audición o la visión, son explicables por la interacción entre los átomos de los efluvios que parten de la cosa percibida y los átomos del receptor. Esto último justifica la relatividad de las sensaciones." (Los orígenes del materialismo, p.p. 115-126.)

"El conocimiento verdadero y profundo es el de los átomos y el vacío, pues son ellos los que generan las apariencias, lo que percibimos, lo superficial." (Los orígenes del materialismo, p.p. 115-126.)

Las deducciones de Demócrito y los otros filósofos se realizaban desde la lógica, el pensamiento racional, relegaba la relevancia del empirismo a un último plano, y depositaba escasa fe en la experiencia sensorial, es decir la que apreciaba por los sentidos. En su teoría del atomismo, explica muy bien el por qué: en el atomismo Demócrito defendía que la materia está compuesta por dos elementos: lo que es, representado por los átomos homogéneos e indivisibles; y lo que no es, el vacío, lo que permite que esos átomos adquieran formas, tamaños, órdenes y posiciones, y constituyan así la totalidad de la physis. Demócrito explicaba las percepciones sensibles tales como la audición o la visión, con la interacción entre los átomos que emanan desde el objeto percibido hasta los organismos receptores. Esto último es lo que prueba con fuerza la relatividad de las sensaciones.


Modelo atómico de Dalton


Varios átomos y moléculas representados en A New System of Chemical Philosophy (1808) de John Dalton.

El modelo atómico de Dalton surgido en el contexto de la química, fue el primer modelo atómico con bases científicas, formulado en 1808 por John Dalton.

El modelo permitió explicar por primera vez porque las sustancias químicas reaccionaban en proporciones estequiométricas fijas (Ley de las proporciones múltiples), y por qué cuando dos sustancias reaccionan para formar dos o más compuestos diferentes, entonces las proporciones de estas relaciones son números enteros. Por ejemplo 14 g de carbono (C), pueden reaccionar con 16 g de oxígeno (O2) para formar monóxido de carbono (CO) o pueden reaccionar con 32 g de oxígeno para formar dióxido de carbono (CO2).

Postulados de Dalton

Dalton explicó su teoría formulando una serie de enunciados simples:

  1. La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.

  2. Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.

  3. Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.

  4. Los átomos, al combinarse para formar compuestos guardan relaciones simples.

  5. Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.

  6. Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.

La materia está formada por partículas pequeñísimas llamadas "átomos". Estos átomos no se pueden dividir ni romper, no se crean ni se destruyen en ninguna reacción química, y nunca cambian. Los átomos de un mismo elemento son iguales entre sí, tienen la misma masa y dimensiones; por ejemplo, todos los átomos de hidrógeno son iguales. Por otro lado, los átomos de elementos diferentes, son diferentes; por ejemplo, los átomos de oxígeno son diferentes a los átomos de hidrógeno. Los átomos pueden combinarse para formar compuestos químicos. Por ejemplo, los átomos de hidrógeno y oxígeno pueden combinarse y formar moléculas de agua. Los átomos, al combinarse para formar compuestos guardan relaciones simples. Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto. Por ejemplo, un átomo de carbono con uno de oxígeno forman monóxido de carbono (CO), mientras que dos átomos de oxígeno con uno de carbono, forman dióxido de carbono (CO2)

Insuficiencias del modelo

Hasta la segunda mitad del siglo XIX no aparecieron evidencias de que los átomos fueran divisibles o estuvieran a su vez constituidos por partes más elementales. Por esa razón el modelo de Dalton no fue cuestionado por décadas, ya que explicaba adecuadamente los hechos. Si bien el modelo usualmente nacido para explicar los compuestos químicos y las regularidades estequiométricas, no podía explicar las regularidades periódicas en las propiedades de los elementos químicos tal como aparecieron en la tabla periódica de los elementos de Mendeleiev (esto sólo sería explicado por los modelos que suponían el átomo estaba formado por electrones dispuestos en capas). El modelo de Dalton tampoco podía dar cuenta de las investigaciones realizadas sobre rayos catódicos que sugirieron que los átomos no eran indivisibles sino que contenían partículas más pequeñas cargadas eléctricamente.


Modelo atómico de Thomson


Representación esquemática del modelo de Thomson.

El modelo atómico de Thomson, es una teoría sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, quien descubrió el electrón en 1897, mucho antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como un pudín de pasas. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una nube de carga negativa se postulaba con una nube de carga positiva.

Éxitos del modelo

El nuevo modelo atómico usó la amplia evidencia obtenida del estudio de los rayos catódicos a lo largo de la segunda mitad del siglo XIX. Si bien el modelo atómico de Dalton daba debida cuenta de la formación de los procesos químicos, postulando átomos indivisibles, la evidencia adicional suministrada por los rayos catódicos sugería que esos átomos contenían partículas eléctricas de carga negativa. El modelo de Dalton ignoraba la estructura interna, pero el modelo de Thomson aunaba las virtudes del modelo de Dalton y simultáneamente podía explicar los hechos de los rayos catódicos.

Insuficiencias del modelo

Si bien el modelo de Thomson explicaba adecuadamente muchos de los hechos observados de la química y los rayos catódicos, hacía predicciones incorrectas sobre la distribución de la carga positiva en el interior de los átomos. Las predicciones del modelo de Thomson resultaban incompatibles con los resultados del experimento de Rutherford, que sugería que la carga positiva estaba concentrada en una pequeña región en el centro del átomo, que es lo que se conoció como núcleo atómico. El modelo siguiente fue el modelo atómico de Rutherford.

Otro hecho que el modelo de Thomson había dejado por explicar era la regularidad de la tabla periódica de Mendeleiev. Los modelos de Bohr, Sommerfeld y Schrödinger finalmente explicarían las regularidades periódicas en las propiedades de los elementos químicos de la tabla, como resultado de una disposición más estructurada de los electrones en el átomo, que ni el modelo de Thomson ni el modelo de Rutherford habían considerado.


Modelo del átomo cúbico


El modelo del átomo cúbico fue un modelo atómico temprano, en el que los electrones del átomo estaban posicionados siguiendo los ocho vértices de un cubo. Esta teoría fue desarrollada en 1902 por Gilbert N. Lewis y publicada en 1916 en el artículo "The Atom and the Molecule" (El Átomo y la Molécula); sirvió para dar cuenta del fenómeno de la valencia. Se basa en la regla de Abegg. Fue desarrollada posteriormente por Irving Langmuir en 1919, como el átomo del octeto cúbico. La figura a continuación muestra las estructuras de los elementos de la segunda fila de la tabla periódica.

Cubical atom 1.svg

Aunque el modelo del átomo cúbico fue abandonado pronto en favor del modelo mecánico cuánticobasado en la ecuación de Schrödinger, y es en consecuencia sólo de interés histórico, representó un paso importante hacia el entendimiento del enlace químico. El artículo de 1916 de Lewis también introdujo el concepto del par de electrones en el enlace covalente, la regla del octeto, y la ahora llamada estructura de Lewis.

Enlaces en el modelo del átomo cúbico

Los enlaces covalentes se forman cuando dos átomos comparten una arista, como en la estructura Cque está a continuación. Dicha estructura resulta en la compartición de dos electrones. Los enlaces iónicos se forman por la transferencia de un electrón de un cubo al otro, sin compartir una ariste (A). Lewis también postuló un estado intermedio, B, donde sólo se comparte una esquina.

Cubical atom 2.svg

Los enlaces dobles se forman por la compartición de una cara entre dos átomos cúbicos. Esto resulta en la compartición de cuatro electrones:

Cubical atom 3.svg

Los enlaces triples no podrían ser interpretados por el modelo del átomo cúbico, porque no hay forma de tener dos cubos compartiendo seis esquinas. Lewis sugirió que los pares de electrones en los enlaces atómicos tienen una atracción especial, que resulta en una estructura tetraédrica, como muestra la figura a continuación (la nueva ubicación de los electrones está representada por círculos punteados en la mitad de las aristas gruesas). Esto permite la formación de un enlace simple por la compartición de una esquina, un enlace doble por la compartición de una arista, y un enlace triple por compartición de una cara. También explica la libre rotación alrededor de un enlace simple y la geometría tetraédrica del metano. Es remarcable que pueda decirse que había un grano de verdad en esta idea; posteriormente se vio que el principio de exclusión de Pauli resulta en un "hueco de Fermi" de repulsión disminuida entre un par de electrones con espín opuesto en el mismo orbital.

Cubical atom 4.svg


Modelo atómico de Rutherford


Modelo de un átomo de Rutherford.

El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico-neozelandés Ernest Rutherford para explicar los resultados de su"experimento de la lámina de oro", realizado en 1911.

El modelo de Rutherford fue el primer modelo atómico que consideró al átomo formado por dos partes: la "corteza", constituida por todos sus electrones, girando a gran velocidad alrededor de un "núcleo", muy pequeño, que concentra toda la carga eléctrica positiva y casi toda la masa del átomo.

Rutherford Llegó a la conclusión de que la masa del átomo se concentraba en una región pequeña de cargas positivas que impedian el paso de las partículas alfa. Sugirió un nuevo modelo en el cual el átomo poseía un núcleo o centro en el cual se concentra la masa y la carga positiva, y que en la zona extranuclear se encuentran los electrones de carga negativa.

Historia

Antes de que Rutherford propusiera su modelo atómico, los físicos aceptaban que las cargas eléctricas en el átomo tenían una distribución más o menos uniforme. Rutherford trató de ver cómo era la dispersión de las partículas alfa por parte de los átomos de una lámina de oro muy delgada. Los ángulos resultantes de la desviación de las partículas supuestamente aportarían información sobre cómo era la distribución de carga en los átomos. Era de esperar que, si las cargas estaban distribuidas uniformemente según el modelo atómico de Thomson, la mayoría de las partículas atravesarían la delgada lámina sufriendo sólo ligerísimas deflexiones, siguiendo una trayectoria aproximadamente recta. Aunque esto era cierto para la mayoría de las partículas alfa, un número importante de estas sufrían deflexiones de cerca de 180º, es decir, prácticamente salían rebotadas en dirección opuesta a la incidente.

Rutherford pensó que esta fracción de partículas rebotadas en dirección opuesta podía ser explicada si se suponía la existencia de fuertes concentraciones de carga positiva en el átomo. La mecánica newtoniana en conjunción con la ley de Coulomb predice que el ángulo de deflexión de una partícula alfa relativamente liviana por parte de un átomo de oro más pesado, depende del "parámetro de impacto" o distancia entre la trayectoria de la partícula y el núcleo:

(1)

\chi = 2\pi - 2\cos^{-1} \left( \frac{2K/(E_0b)}{\sqrt{1+2K/(E_0b)^2}} \right)

Donde:

K = (q_N/4\pi\varepsilon_0)\,, siendo \varepsilon_0 la constante dieléctrica del vacío y q_N\, la carga eléctrica del centro dispersor.

E_0\,, es la energía cinética inicial de la partícula alfa incidente.

b\, es el parámetro de impacto.

Dado que Rutherford observó una fracción apreciable de partículas "rebotadas" para las cuales el ángulo de deflexión es cercano a χ ≈ π, de la relación inversa a (1):

(2)

b = \frac{2K}{E_0}\cot \frac{\chi}{2}

se deduce que el parámetro de impacto debe ser bastante menor que el radio atómico. De hecho el parámetro de impacto necesario para obtener una fracción apreciable de partículas "rebotadas" sirvió para hacer una estimación del tamaño del núcleo atómico, que resulta ser unas cien mil veces más pequeño que el diámetro atómico. Este hecho resultó ser la capacidad uniformable sobre la carga positiva de neutrones.

Importancia del modelo y limitaciones

La importancia del modelo de Rutherford residió en proponer por primera vez la existencia de un núcleo en el átomo (término que, paradójicamente, no aparece en sus escritos). Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que sin ella, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya que implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.

Rutherford propuso que los electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abrían varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlos:

  • Por un lado se planteó el problema de cómo un conjunto de cargas positivas podían mantenerse unidas en un volumen tan pequeño, hecho que llevó posteriormente a la postulación y descubrimiento de la fuerza nuclear fuerte, que es una de las cuatro interacciones fundamentales.

  • Por otro lado existía otra dificultad proveniente de la electrodinámica clásica que predice que una partícula cargada y acelerada, como sería el caso de los electrones orbitando alrededor del núcleo, produciría radiación electromagnética, perdiendo energía y finalmente cayendo sobre el núcleo. Las leyes de Newton, junto con las ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de 10^{-10}s, toda la energía del átomo se habría radiado, con la consiguiente caída de los electrones sobre el núcleo. Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la física clásica.

Según Rutherford, las órbitas de los electrones no están muy bien definidas y forman una estructura compleja alrededor del núcleo, dándole un tamaño y forma algo indefinidas. Los resultados de su experimento le permitieron calcular que el radio atómico era diez mil veces mayor que el núcleo mismo, y en consecuencia, que el interior de un átomo está prácticamente vacío.

Modelos posteriores

El modelo atómico de Rutherford fue sustituido muy pronto por el de Bohr. Bohr intentó explicar fenomenológicamente que sólo algunas órbitas de los electrones son posibles. Lo cual daría cuenta de los espectros de emisión y absorción de los átomos en forma de bandas discretas.

El modelo de Bohr "resolvía" formalmente el problema, proveniente de la electrodinámica, postulando que sencillamente los electrones no radiaban, hecho que fue explicado por la mecánica cuántica según la cual la aceleración promedio del electrón deslocalizado es nula.


Modelo atómico de Bohr


Diagrama del modelo atómico de Bohr.

El modelo atómico de Bohr o de Bohr-Rutherfordes un modelo clásico del átomo, pero fue el primer modelo atómico en el que se introduce una cuantización a partir de ciertos postulados (ver abajo). Fue propuesto en 1913 por el físico danés Niels Bohr, para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo y por qué los átomos presentaban espectros de emisión característicos (dos problemas que eran ignorados en el modelo previo de Rutherford). Además el modelo de Bohr incorporaba ideas tomadas del efecto fotoeléctrico, explicado por Albert Einstein en 1905.

Introducción

Bohr se basó en el átomo de hidrógeno para hacer el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia.

En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número "n" recibe el nombre de Número Cuántico Principal.

Bohr supuso además que el momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.

Estos niveles en un principio estaban clasificados por letras que empezaban en la "K" y terminaban en la "Q". Posteriormente los niveles electrónicos se ordenaron por números. Cada órbita tiene electrones con distintos niveles de energía obtenida que después se tiene que liberar y por esa razón el electrón va saltando de una órbita a otra hasta llegar a una que tenga el espacio y nivel adecuado, dependiendo de la energía que posea, para liberarse sin problema y de nuevo volver a su órbita de origen.

Sin embargo no explicaba el espectro de estructura fina que podría ser explicado algunos años más tarde gracias al modelo atómico de Sommerfeld. Históricamente el desarrollo del modelo atómico de Bohr junto con la dualidad onda-corpúsculo permitiría a Erwin Schrödinger descubrir la ecuación fundamental de la mecánica cuántica.

Postulados de Bohr

En 1913, Niels Bohr desarrolló su célebre modelo atómico de acuerdo a tres postulados fundamentales:

Primer postulado

Los electrones describen órbitas circulares en torno al núcleo del átomo sin radiar energía.

La causa de que el electrón no radie energía en su órbita es, de momento, un postulado, ya que según la electrodinámica clásica una carga con un movimiento acelerado debe emitir energía en forma de radiación.

Para conseguir el equilibrio en la órbita circular, las dos fuerzas que siente el electrón: la fuerza coulombiana, atractiva, por la presencia del núcleo y la fuerza centrífuga, repulsiva por tratarse de un sistema no inercial, deben ser iguales en magnitud en toda la órbita. Esto nos da la siguiente expresión:

 k{Ze^2 \over r^2} = {m_ev^2 \over r}

Donde el primer término es la fuerza eléctrica o de Coulomb, y el segundo es la fuerza centrífuga; k es la constante de la fuerza de Coulomb, Z es el número atómico del átomo, e es la carga del electrón, m_e es la masa del electrón, v es la velocidad del electrón en la órbita y r el radio de la órbita.

En la expresión anterior podemos despejar el radio, obteniendo:

r=k{Ze^2 \over mv^2}

Y ahora con ésta ecuación y sabiendo que la energía total es la suma de las energías cinética y potencial:

E=T+V={1 \over 2}mv^2-k{Ze^2 \over r}=-{1 \over 2}{kZe^2 \over r}

Donde queda expresada la energía de una órbita circular para el electrón en función del radio de dicha órbita.

Segundo postulado

No todas las órbitas para electrón están permitidas, tan solo se puede encontrar en órbitas cuyo radio cumpla que el momento angular, L, del electrón sea un múltiplo entero de \hbar={h \over 2\pi} Esta condición matemáticamente se escribe:

L=m \ v \ r=n \ \hbar

con  n=1,2,3,\dots

A partir de ésta condición y de la expresión para el radio obtenida antes, podemos eliminar v y queda la condición de cuantización para los radios permitidos:

r_n={n^2\hbar^2 \over km_eZe^2}

con  n=1,2,3,\dots; subíndice introducido en esta expresión para resaltar que el radio ahora es una magnitud discreta, a diferencia de lo que decía el primer postulado.

Ahora, dándole valores a n, número cuántico principal, obtenemos los radios de las órbitas permitidas. Al primero de ellos (con n=1), se le llama radio de Bohr:

a_0={\hbar^2 \over k m_e e^2}=0.52

expresando el resultado en ångström.

Del mismo modo podemos ahora sustituir los radios permitidos r_n en la expresión para la energía de la órbita y obtener así la energía correspondiente a cada nivel permitido:

E_n=-{1 \over 2}{k^2mZ^2e^4 \over n^2\hbar^2}

Igual que antes, para el átomo de Hidrógeno (Z=1) y el primer nivel permitido (n=1), obtenemos:

E_0=-{1 \over 2}{k^2m e^4 \over \hbar^2}=-13.6(eV)

que es la llamada energía del estado fundamental del átomo de Hidrógeno.

Y podemos expresar el resto de energías para cualquier Z y n como:

E_n={Z^2\over n^2}E_0

Tercer postulado

El electrón solo emite o absorbe energía en los saltos de una órbita permitida a otra. En dicho cambio emite o absorbe un fotón cuya energía es la diferencia de energía entre ambos niveles. Este fotón, según la ley de Planck tiene una energía:

E_{\gamma}=h \nu=E_{n_i} - E_{n_f}

donde n_i identifica la órbita inicial y n_f la final, y \nu es la frecuencia.

Entonces las frecuecias de los fotones emitidos o absorbidos en la transición serán:

\nu = {k^2 m_e Z^2 e^4 \over 2 h \hbar^2} \left({1 \over n_f^2}-{1 \over n_i^2}\right)

A veces, en vez de la frecuencia se suele dar la inversa de la longitud de onda:

\overline{\nu} = {1 \over \lambda} = {k^2 m_e Z^2 e^4 \over 2 h c \hbar^2} \left({1 \over n_f^2}-{1 \over n_i^2}\right)

Ésta última expresión fue muy bien recibida porque explicaba teóricamente la fórmula fenomenológica hallada antes por Balmer para describir las líneas espectrales observadas desde finales del siglo XIX en la desexcitación del Hidrógeno, que venían dadas por:

\overline{\nu} = {1 \over \lambda} = R_H \left({1 \over 2^2}-{1 \over n^2}\right)

con n=3,4,5,\dots, y donde R_H es la constante de Rydberg para el hidrógeno. Y como vemos, la expresión teórica para el caso n_f=2, es la expresión predicha por Balmer, y el valor medido experimentalmente de la constante de Rydberg (1.097 10^7 m^{-1}), coincide con el valor de la fórmula teórica.

Se puede demostrar que este conjunto de hipótesis corresponde a la hipótesis de que los electrones estables orbitando un átomo están descritos por funciones de onda estacionarias. Un modelo atómico es una representación que describe las partes que tiene un átomo y como están dispuestas para formar un todo. Basándose en la constante de Planck E = h \nu\, consiguió cuantizar las órbitas observando las líneas del espectro.


Modelo atómico de Sommerfeld


El Modelo atómico de Sommerfeld es un modelo atómico hecho por el físico alemán Arnold Sommerfeld (1868-1951) que básicamente es una generalización relativista del modelo atómico de Bohr (1913).

Insuficiencias del modelo de Bohr

El modelo atómico de Bohr funcionaba muy bien para el átomo de hidrógeno, sin embargo, en los espectros realizados para átomos de otros elementos se observaba que electrones de un mismo nivel energético tenían distinta energía, mostrando que existía un error en el modelo. Su conclusión fue que dentro de un mismo nivel energético existían subniveles, es decir, energías ligeramente diferentes. Además desde el punto de vista teórico, Sommerfeld había encontrado que en ciertos átomos las velocidades de los electrones alcanzaban una fracción apreciable de la velocidad de la luz. Sommerfeld estudió la cuestión para electrones relativistas.

Características del modelo

Órbitas elípticas en el modelo de Sommerfeld.

En 1916, Sommerfeld perfeccionó el modelo atómico de Bohr intentando paliar los dos principales defectos de éste. Para eso introdujo dos modificaciones básicas: Órbitas casi-elípticas para los electrones y velocidades relativistas. En el modelo de Bohr los electrones sólo giraban en órbitas circulares. La excentricidad de la órbita dio lugar a un nuevo número cuántico: el número cuántico azimutal, que determina la forma de los orbitales, se lo representa con la letra l y toma valores que van desde 0 hasta n-1. Las órbitas con:

  • l = 0 se denominarían posteriormente orbitales s o sharp

  • l = 1 se denominarían p o principal.

  • l = 2 se denominarían d o diffuse.

  • l = 3 se denominarían f o fundamental.

Para hacer coincidir las frecuencias calculadas con las experimentales, Sommerfeld postuló que el núcleo del átomo no permanece inmóvil, sino que tanto el núcleo como el electrón se mueven alrededor del centro de masas del sistema, que estará situado muy próximo al núcleo al tener este una masa varios miles de veces superior a la masa del electrón.

Para explicar el desdoblamiento de las líneas espectrales, observando al emplear espectroscopios de mejor calidad, Sommerfeld supone que las órbitas del electrón pueden ser circulares y elípticas. Introduce el número cuántico secundario o azimutal, en la actualidad llamado l, que tiene los valores 0, 1, 2,…(n-1), e indica el momento angular del electrón en la órbita en unidades de , determinando los subniveles de energía en cada nivel cuántico y la excentricidad de la órbita.

Resumen

En 1916, Arnold Sommerfeld, con la ayuda de la relatividad de Albert Einstein, hizo las siguientes modificaciones al modelo de Bohr:

  1. Los electrones se mueven alrededor del núcleo, en órbitas circulares o elípticas.

  2. A partir del segundo nivel energético existen dos o más subniveles en el mismo nivel.

  3. El electrón es una corriente eléctrica minúscula.

En consecuencia el modelo atómico de Sommerfeld es una generalización del modelo atómico de Bohr desde el punto de vista relativista, aunque no pudo demostrar las formas de emisión de las órbitas elípticas, solo descartó su forma circular.


Modelo atómico de Schrödinger


Densidad de probabilidad de ubicación de un electrón para los primeros niveles de energía.

El modelo atómico de Schrödinger (1924) es un modelo cuántico no relativista. Se basa en la solución de la ecuación de Schrödinger para un potencial electrostático con simetría esférica, llamado también átomo hidrogenoide. En este modelo los electrones se contemplaban originalmente como una onda estacionaria de materia cuya amplitud decaía rápidamente al sobrepasar el radio atómico.

El modelo de Bohr funcionaba muy bien para el átomo de hidrógeno. En los espectros realizados para otros átomos se observaba que electrones de un mismo nivel energético tenían energías ligeramente diferentes. Esto no tenía explicación en el modelo de Bohr, y sugería que se necesitaba alguna corrección. La propuesta fue que dentro de un mismo nivel energético existían subniveles. La forma concreta en que surgieron de manera natural estos subniveles, fue incorporando órbitas elípticas y correcciones relativistas. Así, en 1916, Arnold Sommerfeld modificó el modelo atómico de Bohr, en el cual los electrones sólo giraban en órbitas circulares, al decir que también podían girar en órbitas elípticas más complejas y calculó los efectos relativistas.

Características del modelo

El modelo atómico de Schrödinger concebía originalmente los electrones como ondas de materia. Así la ecuación se interpretaba como la ecuación ondulatoria que describía la evolución en el tiempo y el espacio de dicha onda material. Más tarde Max Born propuso una interpretación probabilística de la función de onda de los electrones. Esa nueva interpretación es compatible con los electrones concebidos como partículas cuasipuntuales cuya probabilidad de presencia en una determinada región viene dada por la integral del cuadrado de la función de onda en una región. Es decir, en la interpretación posterior del modelo, éste era modelo probabilista que permitía hacer predicciones empíricas, pero en el que la posición y la cantidad de movimiento no pueden conocerse simultáneamente, por el principio de incertidumbre. Así mismo el resultado de ciertas mediciones no están determinadas por el modelo, sino sólo el conjunto de resultados posibles y su distribución de probabilidad.

Adecuación empírica

El modelo atómico de Schrödinger predice adecuadamente las líneas de emisión espectrales, tanto de átomos neutros como de átomos ionizados. El modelo también predice adecuadamente la modificación de los niveles energéticos cuando existe un campo magnético o eléctrico (efecto Zeeman y efecto Stark respectivamente). Además, con ciertas modificaciones semiheurísticas el modelo explica el enlace químico y la estabilidad de las moléculas. Cuando se necesita una alta precisión en los niveles energéticos puede emplearse un modelo similar al de Schrödinger, pero donde el electrón es descrito mediante la ecuación relativista de Dirac en lugar de mediante la ecuación de Schrödinger. El átomo reside en su propio eje.

Sin embargo, el nombre de "modelo atómico" de Schrödinger puede llevar a una confusión ya que no explica la estructura completa del átomo. El modelo de Schrödinger explica sólo la estructura electrónica del átomo y su interacción con la estructura electrónica de otros átomos, pero no explica como es el núcleo atómico ni su estabilidad.

Solución de la ecuación de Schrödinger

Las soluciones estacionarias de la ecuación de Schrödinger en un campo central electrostático, están caracterizadas por tres números cuánticos (n, l, m) que a su vez están relacionados con lo que en el caso clásico corresponderían a las tres integrales del movimiento independientes de una partícula en un campo central. Estas soluciones o funciones de onda normalizadas vienen dadas en coordenadas esféricas por:

 \psi_{nlm}(\theta,\phi,r) = \langle \vec r|nlm\rangle = \sqrt {{\left (  \frac{2}{n a_0} \right )}^3\frac{(n-l-1)!}{2n[(n+l)!]}2} e^{-{r \over {na_0}}}\left({2r \over {na_0}}\right)^l L_{n-l-1}^{2l+1}\left[{2r \over {na_0}}\right] Y_{l,m}(\theta, \phi )

donde:

 a_0 es el radio de Bohr.

 L_{n-l-1}^{2l+1}(\rho) son los polinomios generalizados de Laguerre de grado n-l-1.

 Y_{l,m}(\theta, \phi ) \, es el armónico esférico (l, m).

Los autovalores son:

Para el operador momento angular:

 L^2 | n, l, m \rang = {\hbar}^2 l(l+1) | n, l, m \rang

 L_z | n, l, m \rang = \hbar m | n, l, m \rang

Para el operador hamiltoniano:

 H| n, l, m \rang = E_n | n, l, m \rang

donde:

 E_n = -{{m c^2 Z^2 \alpha^2} \over {2 \cdot n^2}} = - {{m \over 2 \hbar^2}\left({Z e^2 \over 4 \pi \epsilon_0}\right)^2{1 \over n^2}}

α es la constante de estructura fina con Z=1.

Insuficiencias del modelo

Si bien el modelo de Schrödinger describe adecuadamente la estructura electrónica de los átomos, resulta incompleto en otros aspectos:

  1. El modelo de Schrödinger en su formulación original no tiene en cuenta el espín de los electrones, esta deficiencia es corregida por el modelo de Schrödinger-Pauli.

  2. El modelo de Schrödinger ignora los efectos relativistas de los electrones rápidos, esta deficiencia es corregida por la ecuación de Dirac que además incorpora la descripción del espín electrónico.

  3. El modelo de Schrödinger si bien predice razonablemente bien los niveles energéticos, por sí mismo no explica por qué un electrón en un estado cuántico excitado decae hacia un nivel inferior si existe alguno libre. Esto fue explicado por primera vez por la electrodinámica cuántica y es un efecto de la energía del punto cero del vacío cuántico.

Cuando se considera un átomo de hidrógeno los dos dos primeros aspectos pueden corregierse añadiendo términos correctivos al hamiltoniano atómico.

www.Santificacion.Info
¡DVDs, Libros y Artículos Gratis!
FREE DVDs & VIDEOS
WATCH & DOWNLOAD ALL OUR DVDs & VIDEOS FOR FREE!